Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Quantum de Moivre-Laplace theorem for noninteracting indistinguishable particles in random networks

Texto completo
Autor(es):
Shchesnovich, V. S.
Número total de Autores: 1
Tipo de documento: Artigo Científico
Fonte: Journal of Physics A-Mathematical and Theoretical; v. 50, n. 50 DEC 15 2017.
Citações Web of Science: 0
Resumo

The asymptotic form of the average probability to count N indistinguishable identical particles in a small number r << N of binned-together output ports of a M-port Haar-random unitary network, proposed recently in Shchesnovich (2017 Sci. Rep. 7 31) in a heuristic manner with some numerical confirmation, is presented with mathematical rigour and generalised to an arbitrary (mixed) input state of N indistinguishable particles. It is shown that, both in the classical (distinguishable particles) and quantum (indistinguishable particles) cases, the average counting probability into r output bins factorises into a product of r - 1 counting probabilities into two bins. This fact relates the asymptotic Gaussian law to the de Moivre-Laplace theorem in the classical case and similarly in the quantum case where an analogous theorem can be stated. The results have applications to the setups where randomness plays a key role, such as the multiphoton propagation in disordered media and the scattershot Boson sampling. (AU)

Processo FAPESP: 15/23296-8 - Comportamento de partículas idênticas em redes quânticas e o Boson Sampling
Beneficiário:Valery Shchesnovich
Modalidade de apoio: Auxílio à Pesquisa - Regular