Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A free boundary problem with log term singularity

Texto completo
Autor(es):
de Queiroz, Olivaine S. [1] ; Shahgholian, Henrik [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, IMECC, Dept Matemat, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP - Brazil
[2] Royal Inst Technol, Dept Math, S-10044 Stockholm - Sweden
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: INTERFACES AND FREE BOUNDARIES; v. 19, n. 3, p. 351-369, 2017.
Citações Web of Science: 0
Resumo

We study a minimum problem for a non-differentiable functional whose reaction term does not have scaling properties. Specifically we consider the functional (sic)(v) = integral(Omega) (vertical bar del v vertical bar(2)/2 - v(+)(log v - 1))dx -> min which should be minimized in some natural admissible class of non-negative functions. Here, v(+) = max[0, v]. The Euler-Lagrange equation associated with (sic) is -Delta u = chi([u>0]) log u, which becomes singular along the free boundary partial derivative[u > O]. Therefore, the regularity results do not follow from classical methods. Besides, the logarithmic forcing term does not have scaling properties, which are very important in the study of free boundary theory. Despite these difficulties, we obtain optimal regularity of a minimizer and show that, close to every free boundary point, they exhibit a super-characteristic growth like r(2)vertical bar log r vertical bar. This estimate is crucial in the study of analytic and geometric properties of the free boundary. (AU)

Processo FAPESP: 12/20197-0 - Aspectos locais de problemas elípticos e parabólicos
Beneficiário:Olivâine Santana de Queiroz
Modalidade de apoio: Auxílio à Pesquisa - Regular