Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Parametric models to compute tryptophan fluorescence wavelengths from classical protein simulations

Texto completo
Autor(es):
Lopez, Alvaro J. [1, 2] ; Martinez, Leandro [1, 2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Chem, Campinas, SP - Brazil
[2] Univ Estadual Campinas, Ctr Computat Engn & Sci, Campinas, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Journal of Computational Chemistry; v. 39, n. 19, p. 1249-1258, JUL 15 2018.
Citações Web of Science: 1
Resumo

Fluorescence spectroscopy is an important method to study protein conformational dynamics and solvation structures. Tryptophan (Trp) residues are the most important and practical intrinsic probes for protein fluorescence due to the variability of their fluorescence wavelengths: Trp residues emit in wavelengths ranging from 308 to 360 nm depending on the local molecular environment. Fluorescence involves electronic transitions, thus its computational modeling is a challenging task. We show that it is possible to predict the wavelength of emission of a Trp residue from classical molecular dynamics simulations by computing the solvent-accessible surface area or the electrostatic interaction between the indole group and the rest of the system. Linear parametric models are obtained to predict the maximum emission wavelengths with standard errors of the order 5 nm. In a set of 19 proteins with emission wavelengths ranging from 308 to 352 nm, the best model predicts the maximum wavelength of emission with a standard error of 4.89 nm and a quadratic Pearson correlation coefficient of 0.81. These models can be used for the interpretation of fluorescence spectra of proteins with multiple Trp residues, or for which local Trp environmental variability exists and can be probed by classical molecular dynamics simulations. (c) 2018 Wiley Periodicals, Inc. (AU)

Processo FAPESP: 13/05475-7 - Métodos computacionais de otimização
Beneficiário:Sandra Augusta Santos
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 10/16947-9 - Estrutura, dinâmica e função em proteínas: simulação computacional e desenvolvimento de algoritmos
Beneficiário:Leandro Martinez
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/08293-7 - CECC - Centro de Engenharia e Ciências Computacionais
Beneficiário:Munir Salomao Skaf
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs