Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Shear force analysis by core location in Longissimus steaks from Nellore cattle using hyperspectral images - A feasibility study

Texto completo
Autor(es):
Balage, Juliana Monteiro [1] ; Amigo, Jose Manuel [2, 3] ; Antonelo, Daniel Silva [1] ; Mazon, Madeline Rezende [1] ; da Luz e Silva, Saulo [1]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Dept Anim Sci, Coll Anim Sci & Food Engn, Ave Duque de Caxias Norte 225, Caixa Postal 23, BR-13635900 Pirassunungo, SP - Brazil
[2] Univ Copenhagen, Fac Life Sci, Dept Food Sci Qual & Technol, Rolighedsvej 30, DK-1958 Frederiksberg C - Denmark
[3] Univ Fed Pernambuco, Dept Fundamental Chem, Av Prof Moraes Rego, 1235 Cidade Univ, Recife, PE - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: MEAT SCIENCE; v. 143, p. 30-38, SEP 2018.
Citações Web of Science: 1
Resumo

Industry requires non-destructive real-time methods for quality control of meat in order to improve production efficiency and meet consumer expectations. Near Infrared Hyperspectral Images were used for tenderness evaluation of Nellore beef and the construction of tenderness distribution maps. To investigate whether the selection of the region of interest (ROI) in the image at the exact location where the shear force core was collected improves tenderness prediction and classification models, 50 samples from Longissimus muscle were imaged (1000-2500 nm) and shear force were measured (Warner-Bratzler). The data were analyzed by chemometric techniques (Partial Least Squares together with discriminant analysis - PLS-DA). Classification models using local ROI presented better performance than the ROI models of the whole sample (external validation sensitivity for the tough class = 33% and 70%, respectively), but none could be considered as successful model. However, the more general model had better performance in the tenderness distribution maps, with 72% of predicted images correctly classified. (AU)

Processo FAPESP: 15/00293-3 - Avaliação da qualidade da carne bovina utilizando imagem hiperespectral no infravermelho próximo
Beneficiário:Juliana Monteiro Balage
Modalidade de apoio: Bolsas no Brasil - Doutorado