Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Morphological Neuron Classification Based on Dendritic Tree Hierarchy

Texto completo
Autor(es):
Cervantes, Evelyn Perez [1] ; Comin, Cesar Henrique [2] ; Cesar Junior, Roberto Marcondes [1] ; Costa, Luciano da Fontoura [3]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Stat, Sao Paulo - Brazil
[2] Univ Fed Sao Carlos, Dept Comp Sci, Sao Carlos, SP - Brazil
[3] Univ Sao Paulo, Sao Carlos Inst Phys, POB 369, BR-13560970 Sao Carlos, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: NEUROINFORMATICS; v. 17, n. 1, p. 147-161, JAN 2019.
Citações Web of Science: 1
Resumo

The shape of a neuron can reveal interesting properties about its function. Therefore, morphological neuron characterization can contribute to a better understanding of how the brain works. However, one of the great challenges of neuroanatomy is the definition of morphological properties that can be used for categorizing neurons. This paper proposes a new methodology for neuron morphological analysis by considering different hierarchies of the dendritic tree for characterizing and categorizing neuronal cells. The methodology consists in using different strategies for decomposing the dendritic tree along its hierarchies, allowing the identification of relevant parts (possibly related to specific neuronal functions) for classification tasks. A set of more than 5000 neurons corresponding to 10 classes were examined with supervised classification algorithms based on this strategy. It was found that classification accuracies similar to those obtained by using whole neurons can be achieved by considering only parts of the neurons. Branches close to the soma were found to be particularly relevant for classification. (AU)

Processo FAPESP: 15/22308-2 - Representações intermediárias em Ciência Computacional para descoberta de conhecimento
Beneficiário:Roberto Marcondes Cesar Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 15/18942-8 - Associando Redes Complexas com Espaços Efetivos de Atributos
Beneficiário:Cesar Henrique Comin
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado