Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Using emotion recognition to assess simulation-based learning

Texto completo
Autor(es):
Mano, Leandro Y. [1] ; Mazzo, Alessandra [2] ; Neto, Jose R. T. [1] ; Meska, Mateus H. G. [2] ; Giancristofaro, Gabriel T. [1] ; Ueyama, Jo [1] ; Junior, Gerson A. P. [3]
Número total de Autores: 7
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Paulo - Brazil
[2] Univ Sao Paulo, Ribeirao Preto Coll Nursing, BR-14040902 Sao Paulo - Brazil
[3] Univ Sao Paulo, Campus Bauru, BR-17012901 Sao Paulo - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: NURSE EDUCATION IN PRACTICE; v. 36, p. 13-19, MAR 2019.
Citações Web of Science: 0
Resumo

Simulation-based assessment relies on instruments that measure knowledge acquisition, satisfaction, confidence, and the motivation of students. However, the emotional aspects of assessment have not yet been fully explored in the literature. This dimension can provide a deeper understanding of the experience of learning in clinical simulations. In this study, a computer (software) model was employed to identify and classify emotions with the aim of assessing them, while creating a simulation scenario. A group of (twenty-four) students took part in a simulated nursing care scenario that included a patient suffering from ascites and respiratory distress syndrome followed by vomiting. The patient's facial expressions were recorded and then individually analyzed on the basis of six critical factors that were determined by the researchers in the simulation scenario: 1) student-patient communication, 2) dealing with the patient's complaint, 3) making a clinical assessment of the patient, 4) the vomiting episode, 5) nursing interventions, and 6) making a reassessment of the patient. The results showed that emotion recognition can be assessed by means of both dimensional (continuous models) and cognitive (discrete or categorical models) theories of emotion. With the aid of emotion recognition and classification through facial expressions, the researchers succeeded in analyzing the emotions of students during a simulated clinical learning activity. In the study, the participants mainly displayed a restricted affect during the simulation scenario, which involved negative feelings such as anger, fear, tension, and impatience, resulting from the difficulty of creating the scenario. This can help determine which areas the students were able to master and which caused them greater difficulty. The model employed for the recognition and analysis of facial expressions in this study is very comprehensive and paves the way for further use and a more detailed interpretation of its components. (AU)

Processo FAPESP: 16/14267-7 - Explorando Internet das Coisas e Inteligência Artificial no contexto de Saúde em Casas Inteligentes: uma abordagem física e emocional
Beneficiário:Leandro Yukio Mano Alves
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 16/04261-1 - Simulação clínica: implicações dos recursos na satisfação e autoconfiança do estudante e na estratégia de aprendizagem
Beneficiário:Alessandra Mazzo
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 15/21642-6 - Provendo uma maior inteligência em IoTs: abordagens e aplicações em sensores, VANTs e smartphones
Beneficiário:Jó Ueyama
Modalidade de apoio: Auxílio à Pesquisa - Regular