Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Conformal invariance of the zero-vorticity Lagrangian path in 2D turbulence

Texto completo
Autor(es):
Grebenev, V. N. [1] ; Waclawdzyk, M. [2] ; Oderlack, M. [3, 4]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City - Vietnam
[2] Univ Warsaw, Fac Phys, Inst Geophys, Pasteura 7, PL-02093 Warsaw - Poland
[3] Tech Univ Darmstadt, Dept Mech Engn, Chair Fluid Dynam, Otto Berndt Str 2, D-64287 Darmstadt - Germany
[4] Tech Univ Darmstadt, Ctr Computat Engn, Dolivostr 15, D-64293 Darmstadt - Germany
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Journal of Physics A-Mathematical and Theoretical; v. 52, n. 33 AUG 16 2019.
Citações Web of Science: 0
Resumo

It was clearly validated experimentally in Bernard et al (2006 Nat. Phys. 2 124-8) that the zero-vorticity isolines in 2D turbulence belong to the class of conformal invariant SLE kappa (Schram-Lowner evolution) curves with kappa = 6. The diffusion coefficient kappa classifies the conformally invariant random curves. With this motivation, we performed a Lie group analysis in Grebenev et al (2017 Phys. A: Math. Theor. 50 5502-44) of the first of the inviscid Lundgren-Monin-Novikov (LMN) equations for 2D vorticity fields. This equation describes the evolution of the 1-point probability density function (PDF) f(1)(x(1), omega(1), t). We proved that the conformal group (CG) is not admitted by the 1-point PDF equation itself, however it is permitted under the condition omega(1) = 0. The main focus of the present work is to prove explicitly the CG invariance of the zero-vorticity Lagrangian path, which is the characteristic of the inviscid LMN hierarchy truncated to the first equation. We also show the CG invariance of the separation and coincidence properties of the PDFs. Besides the derivation of the CG invariance of the zero-vorticity Lagrangian path, we demonstrate that the infinitesimal operator admitted by the characteristic equations forms a Lie algebra which is the Witt algebra, whose central extension represents exactly the Virasoro algebra. The numerical value of the central charge c occurring here could not be calculated. Other mathematical tools need to be involved to link this analytical study with the previous analyses by Bernard et al, who report the value c = 0, which corresponds to kappa = 6 for the SLE kappa. (AU)

Processo FAPESP: 18/21330-2 - Conjunto mínimo de invariantes diferenciais do grupo de laços que aparece na teoria de fluidos
Beneficiário:Alexandre Grichkov
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional