Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Hierarchical Clustering-Based Graphs for Large Scale Approximate Nearest Neighbor Search

Texto completo
Autor(es):
Munoz, Javier Vargas [1] ; Goncalves, Marcos A. [2] ; Dias, Zanoni [1] ; Torres, Ricardo da S. [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Ave Albert Einstein 1251, Campinas, SP - Brazil
[2] Univ Fed Minas Gerais, Ave Antonio Carlos 6627, Belo Horizonte, MG - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: PATTERN RECOGNITION; v. 96, DEC 2019.
Citações Web of Science: 0
Resumo

This paper presents a novel approach to perform fast approximate nearest neighbors search in high dimensional data, using a nearest neighbor graph created over large collections. This graph is created based on the fusion of multiple hierarchical clustering results, where a minimum-spanning-tree structure is used to connect all elements in a cluster. We propose a novel search technique to guide the navigation on the graph without computing exhaustively the distances to all neighbors in each step of the search, just to those in the direction of the query. The objective is to determine the nearest point to the query with a few number of distance calculations. We experimented in three datasets of 1 million SIFT, GIST, and GloVe features. Results show better speedups than another graph-based technique, and competitive speedups at high recall values when compared to classic and recent state-of-the-art techniques. (C) 2019 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 14/50715-9 - Characterizing and predicting biomass production in sugarcane and eucalyptus plantations in Brazil
Beneficiário:Rubens Augusto Camargo Lamparelli
Linha de fomento: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE
Processo FAPESP: 16/50250-1 - O segredo de jogar futebol: Brasil versus Holanda
Beneficiário:Claudio Alexandre Gobatto
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 17/16246-0 - Análise de mídias sensíveis usando arquiteturas de aprendizado profundo
Beneficiário:Sandra Eliza Fontes de Avila
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/50169-1 - Towards an understanding of tipping points within tropical South American biomes
Beneficiário:Ricardo da Silva Torres
Linha de fomento: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE
Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 17/20945-0 - EMU concedido no processo 16/50250-1: local positioning system
Beneficiário:Ricardo da Silva Torres
Linha de fomento: Auxílio à Pesquisa - Programa Equipamentos Multiusuários
Processo FAPESP: 15/11937-9 - Investigação de problemas difíceis do ponto de vista algorítmico e estrutural
Beneficiário:Flávio Keidi Miyazawa
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 17/12646-3 - Déjà vu: coerência temporal, espacial e de caracterização de dados heterogêneos para análise e interpretação de integridade
Beneficiário:Anderson de Rezende Rocha
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 13/50155-0 - Combining new technologies to monitor phenology from leaves to ecosystems
Beneficiário:Leonor Patricia Cerdeira Morellato
Linha de fomento: Auxílio à Pesquisa - Programa de Pesquisa sobre Mudanças Climáticas Globais - PITE
Processo FAPESP: 15/24494-8 - Comunicação e processamento de big data em nuvens e névoas computacionais
Beneficiário:Nelson Luis Saldanha da Fonseca
Linha de fomento: Auxílio à Pesquisa - Temático