Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Towards an efficient augmented Lagrangian method for convex quadratic programming

Texto completo
Autor(es):
Bueno, Luis Felipe [1] ; Haeser, Gabriel [2] ; Santos, Luiz-Rafael [3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Sao Paulo, Inst Sci & Technol, Sao Jose Dos Campos, SP - Brazil
[2] Univ Sao Paulo, Dept Appl Math, Sao Paulo, SP - Brazil
[3] Univ Fed Santa Catarina, Dept Math, Blumenau, SC - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: COMPUTATIONAL OPTIMIZATION AND APPLICATIONS; v. 76, n. 3, SI, p. 767-800, JUL 2020.
Citações Web of Science: 3
Resumo

Interior point methods have attracted most of the attention in the recent decades for solving large scale convex quadratic programming problems. In this paper we take a different route as we present an augmented Lagrangian method for convex quadratic programming based on recent developments for nonlinear programming. In our approach, box constraints are penalized while equality constraints are kept within the subproblems. The motivation for this approach is that Newton's method can be efficient for minimizing a piecewise quadratic function. Moreover, since augmented Lagrangian methods do not rely on proximity to the central path, some of the inherent difficulties in interior point methods can be avoided. In addition, a good starting point can be easily exploited, which can be relevant for solving subproblems arising from sequential quadratic programming, in sensitivity analysis and in branch and bound techniques. We prove well-definedness and finite convergence of the method proposed. Numerical experiments on separable strictly convex quadratic problems formulated from theNetlibcollection show that our method can be competitive with interior point methods, in particular when a good initial point is available and a second-order Lagrange multiplier update is used. (AU)

Processo FAPESP: 18/24293-0 - Métodos computacionais de otimização
Beneficiário:Sandra Augusta Santos
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 17/18308-2 - Condições de otimalidade e algoritmos de segunda-ordem
Beneficiário:Gabriel Haeser
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 15/02528-8 - Métodos do tipo Newton para otimização linear e não linear
Beneficiário:Luis Felipe Cesar da Rocha Bueno
Modalidade de apoio: Auxílio à Pesquisa - Regular