Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Phase Transition for the Frog Model on Biregular Trees

Autor(es):
Lebensztayn, Elcio [1] ; Utria, Jaime [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, UNICAMP, Inst Math Stat & Sci Computat, Rua Sergio Buarque da Holanda 651, BR-13083859 Campinas, SP - Brazil
[2] Fluminense Fed Univ UFF, Inst Math & Stat, Rua Prof Marcos Waldemar de Freitas Reis S-N, BR-24210201 Niteroi, RJ - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Markov Processes and Related Fields; v. 26, n. 3, p. 447-466, 2020.
Citações Web of Science: 0
Resumo

We study the frog model with death on the biregular tree T-d1,T-d2. Initially, there is a random number of active and inactive particles located on the vertices of the tree. Each active particle moves as a discrete-time independent simple random walk on T-d1,T-d2 and has a probability of death (1 - p) before each step. When an active particle visits a vertex which has not been visited previously, the inactive particles placed there are activated. We prove that this model undergoes a phase transition: for values of p below a critical probability p(c), the system dies out almost surely, and for p > p(c), the system survives with positive probability. We establish explicit bounds for p(c) in the case of random initial configuration. For the model starting with one particle per vertex, the critical probability satisfies p(c)(T-d1,T-d2) = 1/2 + Theta(1/d(1) + 1/d(2)) as d(1), d(2) -> infinity. (AU)

Processo FAPESP: 17/10555-0 - Modelagem estocástica de sistemas interagentes
Beneficiário:Fabio Prates Machado
Modalidade de apoio: Auxílio à Pesquisa - Temático