Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

New lower bounds for the maximal number of inseparable leaves of nonsingular polynomial foliations of the plane

Texto completo
Autor(es):
Braun, Francisco [1] ; Fernandes, Filipe [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Journal of Mathematical Analysis and Applications; v. 491, n. 1 NOV 1 2020.
Citações Web of Science: 0
Resumo

Let F be a nonsingular polynomial differential system of degree n on the real plane and denote by s(n) the maximal number of inseparable leaves that such a system can have. In this paper we prove that s(n) is at least 2n - 1 for all n >= 4. This improves the known lower bounds for s(n), which are 2n - 4 if n >= 7 or n = 5, and respectively 6 and 9 if n = 4 and n = 6. Since it is also known that s(n) <= 2n for all n >= 4 and that s(0) = s(1) = 0 and s(2) = s(3) = 3, the problem of determining s(n) for all n is now almost solved: any improvement in lower or upper bounds will actually find the exact s(n). Our lower bounds for s(n) are attained in the class of Hamiltonian systems. (C) 2020 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 17/00136-0 - Injetividade global de aplicações em R^n
Beneficiário:Francisco Braun
Modalidade de apoio: Auxílio à Pesquisa - Regular