Comportamento das branas sob a transformação da simetria espelho no espaço de modu...
Cohomologia de stacks diferenciáveis via representações homotópicas
Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Univ Fed Fluminense UFF, Dept Geometria GGM, Rua Prof Marcos w de Freitas Reis S-N, BR-24210201 Niteroi, RJ - Brazil
[2] Univ Sao Paulo, Inst Matemat & Estat IME, Rua Matao 1010, BR-05508090 Sao Paulo, SP - Brazil
Número total de Afiliações: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | INTERNATIONAL MATHEMATICS RESEARCH NOTICES; v. 2020, n. 14, p. 4395-4432, JUL 2020. |
Citações Web of Science: | 1 |
Resumo | |
We study vector bundles over Lie groupoids, known as VB-groupoids, and their induced geometric objects over differentiable stacks. We establish a fundamental theorem that characterizes VB-Morita maps in terms of fiber and basic data, and use it to prove the Morita invariance of VB-cohomology, with implications to deformation cohomology of Lie groupoids and of classic geometries. We discuss applications of our theory to Poisson geometry, providing a new insight over Marsden-Weinstein reduction and the integration of Dirac structures. We conclude by proving that the derived category of VB-groupoids is a Morita invariant, which leads to a notion of VB-stacks, and solves (an instance of) an open question on representations up to homotopy. (AU) | |
Processo FAPESP: | 16/01630-6 - Estruturas geométricas generalizadas em geometria de Poisson equivariante |
Beneficiário: | Cristián Andrés Ortiz González |
Modalidade de apoio: | Auxílio à Pesquisa - Regular |