Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix

Texto completo
Autor(es):
Bondarenko, Vitalij M. [1] ; Futorny, Vyacheslav [2] ; Petravchuk, Anatolii P. [3] ; Sergeichuk, Vladimir V. [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Inst Math, Tereshchenkivska 3, Kiev - Ukraine
[2] Univ Sao Paulo, Dept Math, Sao Paulo - Brazil
[3] Taras Shevchenko Univ, Fac Mech & Math, Kiev - Ukraine
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Linear Algebra and its Applications; v. 612, p. 188-205, MAR 1 2021.
Citações Web of Science: 0
Resumo

I.M. Gelfand and V.A. Ponomarev (1969) proved that the problem of classifying pairs (A, B) of commuting nilpotent operators on a vector space contains the problem of classifying an arbitrary t-tuple of linear operators. Moreover, it contains the problem of classifying representations of an arbitrary quiver and an arbitrary finite-dimensional algebra, and so it is considered as hopeless. If (A, B) is such a pair, then Ker A boolean AND Ker B not equal 0. We give a simple normal form (A(nor),B-nor) of the matrices of (A, B) if Ker A boolean AND Ker B is one-dimensional. We do not know whether it is canonical; i.e., whether (A(nor), B-nor) is uniquely determined by (A , B). We prove its uniqueness only if the Jordan canonical form of A is a direct sum of Jordan blocks of the same size and the field is of zero characteristic. The matrix A(nor) is the Weyr canonical form of A, and B-nor commutes with A(nor). In order to describe the structure of (A(nor), B-nor), we describe explicitly all matrices commuting with a given Weyr matrix. (C) 2020 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 18/24089-4 - Problemas de classificação para matrizes, espaços de matrizes e tensores
Beneficiário:Vyacheslav Futorny
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional
Processo FAPESP: 18/23690-6 - Estruturas, representações e aplicações de sistemas algébricos
Beneficiário:Ivan Chestakov
Modalidade de apoio: Auxílio à Pesquisa - Temático