Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

The use of health geography modeling to understand early dispersion of COVID-19 in Sao Paulo, Brazil

Texto completo
Autor(es):
Fortaleza, Carlos Magno Castelo Branco [1] ; Guimaraes, Raul Borges [2] ; Catao, Rafael de Castro [3] ; Ferreira, Claudia Pio [4] ; Berg de Almeida, Gabriel [1] ; Nogueira Vilches, Thomas [5] ; Pugliesi, Edmur [2]
Número total de Autores: 7
Afiliação do(s) autor(es):
[1] Sao Paulo State Univ UNESP, Botucatu Med Sch, Dept Infect Dis, Botucatu, SP - Brazil
[2] Sao Paulo State Univ UNESP, Fac Sci & Technol, Dept Geog, Presidente Prudente, SP - Brazil
[3] Univ Fed Espirito Santo, Dept Geog, Vitoria, ES - Brazil
[4] Sao Paulo State Univ UNESP, Inst Biosci, Botucatu, SP - Brazil
[5] Univ Campinas UNICAMP, Inst Math Stat & Sci Computat, Campinas, SP - Brazil
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: PLoS One; v. 16, n. 1 JAN 7 2021.
Citações Web of Science: 3
Resumo

Public health policies to contain the spread of COVID-19 rely mainly on non-pharmacological measures. Those measures, especially social distancing, are a challenge for developing countries, such as Brazil. In Sao Paulo, the most populous state in Brazil (45 million inhabitants), most COVID-19 cases up to April 18th were reported in the Capital and metropolitan area. However, the inner municipalities, where 20 million people live, are also at risk. As governmental authorities discuss the loosening of measures for restricting population mobility, it is urgent to analyze the routes of dispersion of COVID-19 in Sao Paulo territory. We hypothesize that urban hierarchy is the main responsible for the disease spreading, and we identify the hotspots and the main routes of virus movement from the metropolis to the inner state. In this ecological study, we use geographic models of population mobility to check for patterns for the spread of SARS-CoV-2 infection. We identify two patterns based on surveillance data: one by contiguous diffusion from the capital metropolitan area, and the other hierarchical with long-distance spread through major highways that connects Sao Paulo city with cities of regional relevance. This knowledge can provide real-time responses to support public health strategies, optimizing the use of resources in order to minimize disease impact on population and economy. (AU)

Processo FAPESP: 18/24811-1 - Modelagem matemática para transmissão de esquistossomose em áreas de baixa prevalência
Beneficiário:Thomas Nogueira Vilches
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 18/24058-1 - Arboviroses: dinâmica e controle de vetores
Beneficiário:Cláudia Pio Ferreira
Modalidade de apoio: Auxílio à Pesquisa - Regular