Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Foreseeing future falls with accelerometer features in active community-dwelling older persons with no recent history of falls

Texto completo
Autor(es):
Bet, Patricia [1, 2] ; Castro, Paula C. [1] ; Ponti, Moacir A. [3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Sao Carlos, DGero, Sao Carlos, SP - Brazil
[2] Univ Sao Paulo, Programa Posgrad Interunidades Bioengn, BR-13566590 Sao Carlos, SP - Brazil
[3] Univ Sao Paulo, ICMC, BR-13566590 Sao Carlos, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Experimental Gerontology; v. 143, JAN 2021.
Citações Web of Science: 0
Resumo

Background: Acceleration sensors are a viable option for monitoring gait patterns and its application on monitoring falls and risk of falling. However the literature still lacks prospective studies to investigate such risk before the occurrence of falls. Objective: To investigate features extracted from accelerometer signals with the purpose of predicting future falls in individuals with no recent history of falls. Methods: In this study we investigate the risk of fall in active and healthy community-dwelling living older persons with no recent history of falls, using a single accelerometer and variants of the Timed Up and Go (TUG) test. A prospective study was conducted with 74 healthy non-fallers older persons. After collecting acceleration data from the participants at the baseline, the occurrence of falls (outcome) was monitored quarterly during one year. A set of frequency features were extracted from the signal and their ability to predict falls was evaluated. Results: The best individual feature result shows an accuracy of 0.75, sensitivity of 0.71 and specificity of 0.76. A fusion of the three best features increases the sensitivity to 0.86. On the other hand, the cut-off points of the TUG seconds, often used to assess fall risk, did not demonstrate adequate sensitivity. Conclusion: The results confirms previous evidence that accelerometer features can better estimate fall risk, and support potential applications that try to infer falls risk in less restricted scenarios, even in a sample stratified by age and gender composed of active and healthy community-dwelling living older persons. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 18/22482-0 - Aprendendo características de conteúdo visual sob condições de supervisão limitada utilizando múltiplos domínios
Beneficiário:Moacir Antonelli Ponti
Modalidade de apoio: Auxílio à Pesquisa - Regular