Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

h(1) not equal h(1) for Anderson t-motives

Texto completo
Autor(es):
Grishkov, A. [1, 2] ; Logachev, D. [3]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Omsk State Univ, Pr Mira 55-A, Omsk 644077 - Russia
[2] Univ Sao Paulo, Dept Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo - Brazil
[3] Univ Fed Amazonas, Dept Matemat, Manaus, Amazonas - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF NUMBER THEORY; v. 225, p. 59-89, AUG 2021.
Citações Web of Science: 0
Resumo

Let M be an Anderson t-motive of dimension n and rank r. Associated are two F-q{[}T]-modules H-1(M), H-1(M) of dimensions h(1)(M), h(1)(M) <= r - analogs of H-1(A, Z), H-1(A, Z) for an abelian variety A. There is a theorem (Anderson): h(1)(M) = r double left right arrow h(1)(M) = r; in this case M is called uniformizable. It is natural to expect that always h(1)(M) = h(1)(M). Nevertheless, we explicitly construct a counterexample. Further, we answer a question of D. Goss: is it possible that two Anderson t-motives that differ only by a nilpotent operator N are of different uniformizability type, i.e. one of them is uniformizable and other not? We give an explicit example that this is possible. Finally, explicit formulas for calculation of h(1)(M), h(1)(M) obtained in the present paper will be used in future for systematic calculation of h(1), h(1) of all Anderson t-motives. Moreover, the first step of this calculation (for a class of t-motives) is already made in a forthcoming paper of the authors. (C) 2021 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 17/19777-6 - T-motivos de Anderson, seus L-funções e reticulados
Beneficiário:Alexandre Grichkov
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Brasil