O formalismo de bracket derivado em álgebra e geometria, módulos de Gelfand-Tsetli...
Realização por tabelas de módulos cuspidais para Álgebras de Lie Simples
Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Univ Fed Minas Gerais, Ave Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG - Brazil
[2] Imecc Unicamp, Dept Matemat, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP - Brazil
Número total de Afiliações: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | BULLETIN DES SCIENCES MATHEMATIQUES; v. 170, SEP 2021. |
Citações Web of Science: | 0 |
Resumo | |
In the present work, we study Hamiltonian systems on (co)adjoint orbits and propose a Lax pair formalism for Gelfand-Tsetlin integrable systems defined on (co)adjoint orbits of the compact Lie groups U(n) and SO(n). In the particular setting of (co)adjoint orbits of U(n), by means of the associated Lax matrix we construct a family of algebraic curves which encodes the Gelfand-Tsetlin integrable systems as branch points. This family of algebraic curves enables us to explore some new insights into the relationship between the topology of singular Gelfand-Tsetlin fibers, singular algebraic curves and vanishing cycles. Further, we provide a new description for Guillemin and Sternberg's action coordinates in terms of hyperelliptic integrals. (C) 2021 Elsevier Masson SAS. All rights reserved. (AU) | |
Processo FAPESP: | 18/13481-0 - Geometria de sistemas de controle, sistemas dinâmicos e estocásticos |
Beneficiário: | Marco Antônio Teixeira |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |