Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Indeterminate thyroid cytology: detecting malignancy using analysis of nuclear images

Texto completo
Autor(es):
Mostrar menos -
Hayashi, Caroline Y. [1] ; Jaune, Danilo T. A. [1] ; Oliveira, Cristiano C. [2] ; Coelho, Barbara P. [3] ; Miot, Helio A. [4] ; Marques, Mariangela E. A. [2] ; Tagliarini, Jose Vicente [5] ; Castilho, Emanuel C. [5] ; Soares, Carlos S. P. [5] ; Oliveira, Flavia R. K. [1] ; Soares, Paula [6, 7, 8] ; Mazeto, Glaucia M. F. S. [1]
Número total de Autores: 12
Afiliação do(s) autor(es):
[1] Sao Paulo State Univ UNESP, Botucatu Med Sch, Dept Internal Med, Botucatu, SP - Brazil
[2] Sao Paulo State Univ UNESP, Botucatu Med Sch, Dept Pathol, Botucatu, SP - Brazil
[3] Sao Paulo State Univ Unesp, Botucatu Med Sch, Dept Surg & Orthoped, Botucatu, SP - Brazil
[4] Sao Paulo State Univ Unesp, Botucatu Med Sch, Dept Dermatol, Botucatu, SP - Brazil
[5] Sao Paulo State Univ Unesp, Botucatu Med Sch, Dept Otolaryngol & Head & Neck Surg, Botucatu, SP - Brazil
[6] Univ Porto, Inst Invest & Inovacao Saude i3S, Porto - Portugal
[7] Univ Porto IPATIMUP, Canc Signaling & Metab Grp, Inst Mol Pathol & Immunol, Porto - Portugal
[8] Univ Porto, Dept Pathol, Med Fac, Porto - Portugal
Número total de Afiliações: 8
Tipo de documento: Artigo Científico
Fonte: ENDOCRINE CONNECTIONS; v. 10, n. 7, p. 707-714, JUL 2021.
Citações Web of Science: 0
Resumo

Background: Thyroid nodules diagnosed as `atypia of undetermined significance/follicular lesion of undetermined significance' (AUS/FLUS) or `follicular neoplasm/suspected follicular neoplasm' (FN/SFN), according to Bethesda's classification, represent a challenge in clinical practice. Computerized analysis of nuclear images (CANI) could be a useful tool for these cases. Our aim was to evaluate the ability of CANI to correctly classify AUS/FLUS and FN/SFN thyroid nodules for malignancy. Methods: We studied 101 nodules cytologically classified as AUS/FLUS (n = 68) or FN/SFN (n = 33) from 97 thyroidectomy patients. Slides with cytological material were submitted for manual selection and analysis of the follicular cell nuclei for morphometric and texture parameters using ImageJ software. The histologically benign and malignant lesions were compared for such parameters which were then evaluated for the capacity to predict malignancy using the classification and regression trees gini model. The intraclass coefficient of correlation was used to evaluate method reproducibility. Results: In AUS/FLUS nodule analysis, the benign and malignant nodules differed for entropy (P < 0.05), while the FN/SFN nodules differed for fractal analysis, coefficient of variation (CV) of roughness, and CV-entropy (P < 0.05). Considering the AUS/FLUS and FN/SFN nodules separately, it correctly classified 90.0 and 100.0% malignant nodules, with a correct global classification of 94.1 and 97%, respectively. We observed that reproducibility was substantially or nearly complete (0.61-0.93) in 10 of the 12 nuclear parameters evaluated. Conclusion: CANI demonstrated a high capacity for correctly classifying AUS/FLUS and FN/SFN thyroid nodules for malignancy. This could be a useful method to help increase diagnostic accuracy in the indeterminate thyroid cytology. (AU)

Processo FAPESP: 16/14988-6 - Lesões tireoidianas Classes III e IV: detecção de malignidade por análise computadorizada de imagens nucleares
Beneficiário:Danilo Takeshi Abe Jaune
Modalidade de apoio: Bolsas no Brasil - Iniciação Científica