Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

se of a Bayesian Network Model to predict psychiatric illness in individuals with `at risk mental states' from a general population cohor

Texto completo
Autor(es):
Mostrar menos -
Loch, Alexandre Andrade [1, 2] ; Ara, Anderson [3] ; Hortencio, Lucas [1] ; Marques, Julia Hatagami [1] ; Talib, Leda Leme [1, 2] ; Andrade, Julio Cesar [1] ; Serpa, Mauricio Henriques [1, 2, 4] ; Sanchez, Luciano [1] ; Alves, Tania Maria ; van de Bilt, Martinus Theodorus [1, 2] ; Roessler, Wulf [5, 6, 2] ; Gattaz, Wagner Farid [1, 2]
Número total de Autores: 12
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Hosp Clin HCFMUSP, Fac Med, Inst Psiquiatria, Lab Neurociencias LIM 27, Sao Paulo, SP - Brazil
[2] Inst Nacl Biomarcadores Neuropsiquiatria INBION, Conselho Nacl Desenvolvimento Cientif & Tecnol, Sao Paulo - Brazil
[3] Univ Fed Parana, Dept Stat, Curitiba, PR - Brazil
[4] Univ Sao Paulo, Hosp Clin HCFMUSP, Fac Med, Inst Psiquiatr, Lab Neuroimagem Psiquiatria LIM 21, Sao Paulo, SP - Brazil
[5] Univ Zurich, Hosp Psychiat, Dept Psychiat Psychotherapy & Psychosomat, Zurich - Switzerland
[6] Charite, Dept Psychiat & Psychotherapy, Berlin - Germany
Número total de Afiliações: 6
Tipo de documento: Artigo Científico
Fonte: Neuroscience Letters; v. 770, JAN 23 2022.
Citações Web of Science: 0
Resumo

The `at risk mental state' (ARMS) paradigm has been introduced in psychiatry to study prodromal phases of schizophrenia. With time it was seen that the ARMS state can also precede mental disorders other than schizophrenia, such as depression and anxiety. However, several problems hamper the paradigm's use in preventative medicine, such as varying transition rates across studies, the use of non-naturalistic samples, and the multifactorial nature of psychiatric disorders. To strengthen ARMS predictive power, there is a need for a holistic model incorporating-in an unbiased fashion-the small-effect factors that cause mental disorders. Bayesian networks, a probabilistic graphical model, was used in a populational cohort of 83 ARMS individuals to predict conversion to psychiatric illness. Nine predictors-including state, trait, biological and environmental factors-were inputted. Dopamine receptor 2 polymorphism, high private religiosity, and childhood trauma remained in the final model, which reached an 85.51% (SD = 0.1190) accuracy level in predicting conversion. This is the first time a robust model was produced with Bayesian networks to predict psychiatric illness among at risk individuals from the general population. This could be an important tool to strengthen predictive measures in psychiatry which should be replicated in larger samples to provide the model further learning. (AU)

Processo FAPESP: 16/09069-1 - Seguimento de uma coorte de indivíduos com alto risco para psicose: avaliação de marcadores genéticos de transição.
Beneficiário:Alexandre Andrade Loch
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 18/19823-0 - Avaliação de marcadores biológicos e ambientais no continuum psicótico e em uma amostra de indivíduos em risco alto para psicose
Beneficiário:Alexandre Andrade Loch
Modalidade de apoio: Auxílio à Pesquisa - Regular