Busca avançada
Ano de início
Entree


Application of multispectral imaging combined with machine learning models to discriminate special and traditional green coffee

Texto completo
Autor(es):
Gomes, Winston Pinheiro Claro ; Goncalves, Luis ; Silva, Clissia Barboza da ; Melchert, Wanessa R.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: COMPUTERS AND ELECTRONICS IN AGRICULTURE; v. 198, p. 9-pg., 2022-07-01.
Resumo

Non-destructive techniques aided by machine learning models are widely implemented in food analysis. To discriminate between 'special' and 'traditional' classes of green coffee beans, an advanced multispectral imaging technique based on reflectance and autofluorescence data was employed in combination with four machine learning algorithms (SVM, RF, XGBoost, and CatBoost). Of the four algorithms, SVM showed superior accuracy (0.96) for the test dataset. Analysis using PCA and SVM algorithms showed that autofluorescence data from excitation/emission combination of 405/500 nm contributed most to the discrimination of special green coffee from the traditional class. Fluorophores that can be linked to green fluorescence, namely catechin, caffeine and 4-hydroxybenzoic, synapic and chlorogenic acids, were found to have a considerable influence on the differenti-ation of specialty and traditional coffees. Analysis based on multispectral autofluorescence imaging combined with SVM models was proven to be a valuable tool for future applications in the food industry for the non-destructive and real-time classification of special and traditional green coffee. (AU)

Processo FAPESP: 17/15220-7 - Métodos de análise de imagens não destrutivos para avaliação da qualidade de sementes
Beneficiário:Clíssia Barboza Mastrangelo
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores
Processo FAPESP: 18/24029-1 - Tecnologias ambientalmente amigáveis no preparo de amostras de alimentos
Beneficiário:Wanessa Melchert Mattos
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 18/03802-4 - EMU concedido no processo 2017/15220-7: sistema de imagem VideoMeterLab
Beneficiário:Clíssia Barboza Mastrangelo
Modalidade de apoio: Auxílio à Pesquisa - Programa Equipamentos Multiusuários