Busca avançada
Ano de início
Entree


Integral cohomology of quotients via toric geometry

Texto completo
Autor(es):
Menet, Gregoire
Número total de Autores: 1
Tipo de documento: Artigo Científico
Fonte: EPIJOURNAL DE GEOMETRIE ALGEBRIQUE; v. 6, p. 49-pg., 2022-02-23.
Resumo

We describe the integral cohomology of X/G where X is a compact complex manifold and G a cyclic group of prime order with only isolated fxed points. As a preliminary step, we investigate the integral cohomology of toric blow-ups of quotients of C-n. We also provide necessary and sufficient conditions for the spectral sequence of equivariant cohomology of (X, G) to degenerate at the second page. As an application, we compute the Beauville-Bogomolov form of X/G when X is a Hilbert scheme of points on a K3 surface and G a symplectic automorphism group of orders 5 or 7. (AU)

Processo FAPESP: 14/05733-9 - Geometria de variedades simpléticas irredutíveis
Beneficiário:Grégoire Menet
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado