Christian Rosendal | University of Illinois at Chicago - Estados Unidos
Somas torcidas, posições, e Teoria de Ramsey em Espaços de Banach
Texto completo | |
Autor(es): |
Bartosova, Dana
;
Lopez-Abad, Jordi
;
Lupini, Martino
;
Mbombo, Brice
Número total de Autores: 4
|
Tipo de documento: | Artigo Científico |
Fonte: | JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY; v. 24, n. 4, p. 36-pg., 2022-01-01. |
Resumo | |
We show that the Gurarij space G has extremely amenable automorphism group. This answers a question of Melleray and Tsankov. We also compute the universal minimal flow of the automorphism group of the Poulsen simplex P and we prove that it consists of the canonical action on P itself. This answers a question of Conley and Tornquist. We show that the pointwise stabilizer of any closed proper face of P is extremely amenable. Similarly, the pointwise stabilizer of any closed proper biface of the unit ball of the dual of the Gurarij space (the Lusky simplex) is extremely amenable. These results are obtained via several Kechris-Pestov-Todorcevic correspondences, by estab-lishing the approximate Ramsey property for several classes of finite-dimensional Banach spaces and function systems and their versions with distinguished contractions. This is the first direct application of the Kechris-Pestov-Todorcevic correspondence in the setting of metric structures. The fundamental combinatorial principle that underpins the proofs is the Dual Ramsey Theorem of Graham and Rothschild. (AU) | |
Processo FAPESP: | 12/20084-1 - Grupos topológicos universais |
Beneficiário: | Brice Rodrigue Mbombo Dempowo |
Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |
Processo FAPESP: | 13/24827-1 - Métodos de teoria de Ramsey em espaços de Banach |
Beneficiário: | Valentin Raphael Henri Ferenczi |
Modalidade de apoio: | Auxílio à Pesquisa - Pesquisador Visitante - Internacional |
Processo FAPESP: | 13/14458-9 - Álgebra na compactificação de Cech-Stone e suas aplicações em dinâmica topológica, teoria ergódica e teoria de Ramsey. |
Beneficiário: | Dana Bartosova |
Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |