Estimativas do tipo L^p-L^q para equações diferenciais parciais hiperbólicas
Estimativas a priori para equações semilineares hiperbólicas
Dinâmica de equações de ondas semi lineares com dissipação localizada
Texto completo | |
Autor(es): |
Carriao, Paulo Cesar
;
Miyagaki, Olimpio Hiroshi
;
Vicente, Andre
Número total de Autores: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | Mathematische Nachrichten; v. 296, n. 1, p. 22-pg., 2022-11-01. |
Resumo | |
In this paper, we study the exponential decay of the energy associated to an initial value problem involving the wave equation on the hyperbolic space B-N. The space B-N is the unit disc {x is an element of R-N : |x| < 1} of R-N endowed with the Riemannian metric g given by g(ij) = p(2)delta(ij), where p(x)=2/1-|x|(2) and delta(ij) = 0, if i not equal j. Making an appropriate change, the problem can be seen as a singular problem on the boundary of the open ball B-1 = { x is an element of R-N ; |x| < 1} endowed with the euclidean metric. The proof is based on the multiplier techniques combined with the use of Hardy's inequality, in a version due to the Brezis-Marcus, which allows us to overcome the difficulty involving the singularities. (AU) | |
Processo FAPESP: | 19/24901-3 - Problema quase linear não local crítica: existência, multiplicidade e propriedades das soluções |
Beneficiário: | Olimpio Hiroshi Miyagaki |
Modalidade de apoio: | Auxílio à Pesquisa - Regular |