Busca avançada
Ano de início
Entree


An Embedded System Architecture based on Genetic Algorithms for Mission and Safety Planning with UAV

Texto completo
Autor(es):
Arantes, Jesimar da Silva ; Arantes, Marcio da Silva ; Motta Toledo, Claudio Fabian ; Trindade Junior, Onofre ; Williams, Brian C. ; ACM
Número total de Autores: 6
Tipo de documento: Artigo Científico
Fonte: PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17); v. N/A, p. 8-pg., 2017-01-01.
Resumo

The present paper describes an embedded system architecture, based on genetic algorithms, aiming safety mission execution by Unmanned Aerial Vehicles (UAVs). A two-dimensional non-convex environment is considered since obstacle avoidance happens. The embedded system integrates the Mission Oriented Sensor Array (MOSA) and In-Flight Awareness (IFA) systems, where MOSA is responsible for mission accomplishment and IFA stands for flight safety. The features of MOSA and IFA are combined under a platform that applies promising genetic algorithm approaches from literature to reach their goals. First, the genetic algorithms performance running from the embedded system is compared against their performance on a personal computer architecture. Next, the proposed system is evaluated in a real-world scenario using Software In-The-Loop (SITL) technique. The computational results showed that the embedded system provides reliable results. (AU)

Processo FAPESP: 13/26091-2 - Estudo e proposição de métodos para o general Chance-Constrained Qualitative state planning problem
Beneficiário:Claudio Fabiano Motta Toledo
Modalidade de apoio: Bolsas no Exterior - Pesquisa
Processo FAPESP: 14/11331-0 - Hybrid qualitative state plan problem e o planejamento de missão com VANTs
Beneficiário:Márcio da Silva Arantes
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 15/23182-2 - Sistema autônomo para supervisão de missão e segurança de voo em VANTs
Beneficiário:Jesimar da Silva Arantes
Modalidade de apoio: Bolsas no Brasil - Doutorado