Busca avançada
Ano de início
Entree


Encapsulation of Rich-Carotenoids Extract from Guarana (Paullinia cupana) Byproduct by a Combination of Spray Drying and Spray Chilling

Texto completo
Autor(es):
Pinho, Lorena Silva ; de Lima, Priscilla Magalhaes ; Gomes de Sa, Samuel Henrique ; Chen, Da ; Campanella, Osvaldo H. ; Rodrigues, Christianne Elisabete da Costa ; Favaro-Trindade, Carmen Silvia
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: FOODS; v. 11, n. 17, p. 19-pg., 2022-09-01.
Resumo

Guarana byproducts are rich in carotenoids, featuring strong antioxidant capacity and health-promoting benefits. However, these compounds are highly susceptible to oxidation and isomerization, which limits their applications in foods. This research aimed to encapsulate the carotenoid-rich extract from reddish guarana peels by spray drying (SD), chilling (SC), and their combination (SDC) using gum arabic and vegetable fat as carriers. The carotenoid-rich extract was analyzed as a control, and the formulations were prepared with the following core-carrier ratios: SD20 (20:80), SD25 (25:75), SD33 (33:67), SC20 (20:80), SC30 (30:70), SC40 (40:60), SDC10 (10:90), and SDC20 (20:80). The physicochemical properties of the formed microparticles were characterized, and their storage stability was evaluated over 90 days. Water activity of microparticles formed during the SD process increased during storage, whereas those formed by SC and SDC processes showed no changes in water activity. The formed microparticles exhibited color variation and size increase over time. Carotenoid degradation of the microparticles was described by zero-order kinetics for most treatments. Considering the higher carotenoid content and its stability, the optimum formulation for each process was selected to further analysis. Scanning electron micrographs revealed the spherical shape and absence of cracks on the microparticle surface, as well as size heterogeneity. SD increased the stability to oxidation of the carotenoid-rich extract by at least 52-fold, SC by threefold, and SDC by 545-fold. Analysis of the thermophysical properties suggested that the carrier and the process of encapsulation influence the powder's thermal resistance. Water sorption data of the SDC microparticles depended on the blend of the carrier agents used in the process. Carotenoid encapsulation via an innovative combination of spray drying and spray chilling processes offers technological benefits, which could be applied as a promising alternative to protect valuable bioactive compounds. (AU)

Processo FAPESP: 19/11113-7 - Produção de alimentos funcionais extrusados enriquecidos com carotenóides obtidos a partir de cascas de guaraná
Beneficiário:Lorena Silva Pinho
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado
Processo FAPESP: 16/24916-2 - Obtenção, encapsulação e aplicação de extrato de carotenoides obtido da casca do guaraná (Paullinia cupana)
Beneficiário:Lorena Silva Pinho
Modalidade de apoio: Bolsas no Brasil - Doutorado