Busca avançada
Ano de início
Entree


On the Asymptotic Variances of Gaussian Markov Random Field Model Hyperparameters in Stochastic Image Modeling

Texto completo
Autor(es):
Levada, Alexandre L. M. ; Mascarenhas, Nelson D. A. ; Tannus, Alberto ; IEEE
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6; v. N/A, p. 4-pg., 2008-01-01.
Resumo

This paper addrresses the problem of approximating the asymptotic variance of Gaussian Markov Random Field (GMRF) spatial dependency hyperparameters by deriving expressions for the observed Fisher information using both first and second derivatives of the pseudo - likelihood functions. The major contribution is that the proposed method allows hypothesis testing, interval estimation and quantitative analysis on the model parameters in several MRF applications, from image analysis to statistical pattern recognition. Finally, experiments using both Markov Chain Monte Carlo (MCMC) synthetic images and real image data provided good results. (AU)

Processo FAPESP: 06/01711-4 - Combinação de modelos de campos aleatórios markovianos para classificação contextual de imagens multiespectrais
Beneficiário:Alexandre Luís Magalhães Levada
Modalidade de apoio: Bolsas no Brasil - Doutorado