Centro Regional de Análise de São Paulo: participação nos experimentos DZero e CMS
Formação das elites brasileiras: estratégias educativas e globalização
Representação, caracterização e modelagem de imagens biológicas utilizando redes c...
Texto completo | |
Autor(es): |
Ruschel, Andrey
;
Gusmao, Arthur Colombini
;
Polleti, Gustavo Padilha
;
Cozman, Fabio Gagliardi
;
KernIsberner, G
;
Ognjanovic, Z
Número total de Autores: 6
|
Tipo de documento: | Artigo Científico |
Fonte: | SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2019; v. 11726, p. 12-pg., 2019-01-01. |
Resumo | |
Advanced question answering typically employs large-scale knowledge bases such as DBpedia or Freebase, and are often based on mappings from entities to real-valued vectors. These mappings, called embeddings, are accurate but very hard to explain to a human subject. Although interpretability has become a central concern in machine learning, the literature so far has focused on non-relational classifiers (such as deep neural networks); embeddings, however, require a whole range of different approaches. In this paper, we describe a combination of symbolic and quantitative processes that explain, using sequences of predicates, completions generated by embeddings. (AU) | |
Processo FAPESP: | 16/18841-0 - Algoritmos para inferência e aprendizado de programas lógicos probabilísticos |
Beneficiário: | Fabio Gagliardi Cozman |
Modalidade de apoio: | Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE |