Busca avançada
Ano de início
Entree


A Ruelle-Perron-Frobenius theorem for expanding circle maps with an indifferent fixed point

Texto completo
Autor(es):
Garibaldi, Eduardo ; Inoquio-Renteria, Irene
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: LETTERS IN MATHEMATICAL PHYSICS; v. 112, n. 4, p. 25-pg., 2022-08-01.
Resumo

We establish an original result for the thermodynamic formalism in the context of expanding circle transformations with an indifferent fixed point. For an observable whose modulus of continuity is linked to the dynamics near such a fixed point, by identifying an appropriate linear space to evaluate the action of the transfer operator, we show that there is a strictly positive eigenfunction associated with the maximal eigenvalue given as the exponential of the topological pressure. Taking into account also the corresponding eigenmeasure, the invariant probability thus obtained is proved to be the unique Gibbs-equilibrium state of the system. (AU)

Processo FAPESP: 19/10485-8 - Medidas de Gibbs para conjuntos de Delone
Beneficiário:Eduardo Garibaldi
Modalidade de apoio: Auxílio à Pesquisa - Regular