Busca avançada
Ano de início
Entree


QUALITATIVE PROPERTIES FOR SOLUTIONS TO CONFORMALLY INVARIANT FOURTH ORDER CRITICAL SYSTEMS

Texto completo
Autor(es):
Andrade, Joao Henrique ; Do O, Joao Marcos
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS; v. N/A, p. 35-pg., 2023-05-23.
Resumo

We study qualitative properties for nonnegative solutions to a con formally invariant coupled system of fourth order equations involving critical exponents. For solutions defined in the punctured space, there exist essentially two cases to analyze. If the origin is a removable singularity, we use an integral moving spheres method to prove that non-singular solutions are rotationally invariant. More precisely, they are the product of a fourth order spherical solution by a unit vector with nonnegative coordinates. If the origin is a non removable singularity, we show that the solutions are radially symmetric and strongly positive. Furthermore, using a Pohozaev-type invariant, we prove the non-existence of semi-singular solutions, i.e., all components equally blow-up in the neighborhood of the origin. Namely, they are classified as multiples of the Emden-Fowler solution. (AU)

Processo FAPESP: 20/07566-3 - Propriedades qualitativas para EDPs de ordem alta e não-locais advindas da Geometria Diferencial
Beneficiário:João Henrique Santos de Andrade
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 21/15139-0 - Propriedades qualitativas para EDPs de quarta ordem não-lineares oriundas na geometria diferencial
Beneficiário:João Henrique Santos de Andrade
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Pós-Doutorado