Mikhail Vladimirovich Zaicev | Moscow State University - Rússia
Texto completo | |
Autor(es): |
Rodriguez, Jose L. Vilca
;
Cortes, Wagner
Número total de Autores: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | JOURNAL OF ALGEBRA AND ITS APPLICATIONS; v. N/A, p. 24-pg., 2023-05-25. |
Resumo | |
This paper is a contribution to the globalization problem for partial group actions on non-associative algebras. We principally focus on partial group actions on Lie algebras, Jordan algebras and Malcev algebras. We give sufficient conditions for the existence and uniqueness of a globalization for partial group actions on the algebras already mentioned. As an application of this result, we show that in characteristic zero every partial group action on a semisimple Malcev algebra admits a globalization, unique up to isomorphism. We give a criterion for the existence and uniqueness of a globalization for a partial group action on a unital Jordan algebra in characteristic different from two, and on a sympathetic Lie algebra (a perfect Lie algebra without center and outer derivations). (AU) | |
Processo FAPESP: | 19/08659-8 - Álgebras de Lie: isomorfismos e ações |
Beneficiário: | Jose Luis Vilca Rodriguez |
Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |