Busca avançada
Ano de início
Entree


Group Actions on Twisted Sums of Banach Spaces

Texto completo
Autor(es):
Castillo, Jesus M. F. ; Ferenczi, Valentin
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY; v. 46, n. 4, p. 47-pg., 2023-07-01.
Resumo

We study bounded actions of groups and semigroups G on exact sequences of Banach spaces from the point of view of (generalized) quasilinear maps, characterize the actions on the twisted sum space by commutator estimates and introduce the associated notions of G-centralizer and G-equivariant map. We will show that when (A) G is an amenable group and (U) the target space is complemented in its bidual by a G-equivariant projection, then uniformly bounded compatible families of operators generate bounded actions on the twisted sum space; that compatible quasilinear maps are linear perturbations of G-centralizers; and that, under (A) and (U), G-centralizers are bounded perturbations of G-equivariant maps. The previous results are optimal. Several examples and counterexamples are presented involving the action of the isometry group of L-p(0, 1), p not equal 2 on the Kalton-Peck space Z(p), certain non-unitarizable triangular representations of the free group F-infinity on the Hilbert space, the compatibility of complex structures on twisted sums, or bounded actions on the interpolation scale of L-p-spaces. In the penultimate section we consider the category of G-Banach spaces and study its exact sequences, showing that, under (A) and (U), G-splitting and usual splitting coincide. The purpose of the final section is to present some applications, showing that several previous result are optimal and to suggest further open lines of research. (AU)

Processo FAPESP: 15/17216-1 - Somas torcidas e representações de grupos em espaços de Banach
Beneficiário:Valentin Raphael Henri Ferenczi
Modalidade de apoio: Bolsas no Exterior - Pesquisa
Processo FAPESP: 13/11390-4 - Somas torcidas, posições, e Teoria de Ramsey em Espaços de Banach
Beneficiário:Valentin Raphael Henri Ferenczi
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 16/25574-8 - Geometria dos espaços de Banach
Beneficiário:Valentin Raphael Henri Ferenczi
Modalidade de apoio: Auxílio à Pesquisa - Temático