Busca avançada
Ano de início
Entree


Approximate von Neumann entropy for directed graphs

Texto completo
Autor(es):
Ye, Cheng ; Wilson, Richard C. ; Comin, Cesar H. ; Costa, Luciano da F. ; Hancock, Edwin R.
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: PHYSICAL REVIEW E; v. 89, n. 5, p. 12-pg., 2014-05-12.
Resumo

In this paper, we develop an entropy measure for assessing the structural complexity of directed graphs. Although there are many existing alternative measures for quantifying the structural properties of undirected graphs, there are relatively few corresponding measures for directed graphs. To fill this gap in the literature, we explore an alternative technique that is applicable to directed graphs. We commence by using Chung's generalization of the Laplacian of a directed graph to extend the computation of von Neumann entropy from undirected to directed graphs. We provide a simplified form of the entropy which can be expressed in terms of simple node in-degree and out-degree statistics. Moreover, we find approximate forms of the von Neumann entropy that apply to both weakly and strongly directed graphs, and that can be used to characterize network structure. We illustrate the usefulness of these simplified entropy forms defined in this paper on both artificial and real-world data sets, including structures from protein databases and high energy physics theory citation networks. (AU)

Processo FAPESP: 11/22639-8 - Estudo da relação estrutura-dinâmica em redes modulares
Beneficiário:Cesar Henrique Comin
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 11/50761-2 - Modelos e métodos de e-Science para ciências da vida e agrárias
Beneficiário:Roberto Marcondes Cesar Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 12/50986-7 - Graph spectra and complex network evolution
Beneficiário:Luciano da Fontoura Costa
Modalidade de apoio: Auxílio à Pesquisa - Regular