Busca avançada
Ano de início
Entree


Enhancing Hyper-to-Real Space Projections Through Euclidean Norm Meta-heuristic Optimization

Texto completo
Autor(es):
Felix Ribeiro, Luiz Carlos ; Roder, Mateus ; de Rosa, Gustavo H. ; Passos, Leandro A. ; Papa, Joao P.
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2021; v. 12702, p. 10-pg., 2021-01-01.
Resumo

The continuous computational power growth in the last decades has made solving several optimization problems significant to humankind a tractable task; however, tackling some of them remains a challenge due to the overwhelming amount of candidate solutions to be evaluated, even by using sophisticated algorithms. In such a context, a set of nature-inspired stochastic methods, called meta-heuristic optimization, can provide robust approximate solutions to different kinds of problems with a small computational burden, such as derivative-free real function optimization. Nevertheless, these methods may converge to inadequate solutions if the function landscape is too harsh, e.g., enclosing too many local optima. Previous works addressed this issue by employing a hypercomplex representation of the search space, like quaternions, where the landscape becomes smoother and supposedly easier to optimize. Under this approach, meta-heuristic computations happen in the hypercomplex space, whereas variables are mapped back to the real domain before function evaluation. Despite this latter operation being performed by the Euclidean norm, we have found that after the optimization procedure has finished, it is usually possible to obtain even better solutions by employing the Minkowski p-norm instead and fine-tuning p through an auxiliary sub-problem with neglecting additional cost and no hyperparameters. Such behavior was observed in eight well-established benchmarking functions, thus fostering a new research direction for hypercomplex meta-heuristic optimization. (AU)

Processo FAPESP: 19/02205-5 - Aprendizado adversarial em processamento de linguagem natural
Beneficiário:Gustavo Henrique de Rosa
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 17/25908-6 - Aprendizado fracamente supervisionado para análise de vídeos no domínio comprimido em tarefas de recuperação e classificação para alertas visuais
Beneficiário:João Paulo Papa
Modalidade de apoio: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE
Processo FAPESP: 19/07665-4 - Centro de Inteligência Artificial
Beneficiário:Fabio Gagliardi Cozman
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Centros de Pesquisa em Engenharia
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 19/07825-1 - Máquinas de Boltzmann em profundidade para reconhecimento de eventos em vídeos
Beneficiário:Mateus Roder
Modalidade de apoio: Bolsas no Brasil - Mestrado