Busca avançada
Ano de início
Entree


Generic singularities of relay systems

Texto completo
Autor(es):
Goncalves, Luiz Fernando ; Teixeira, Marco Antonio ; Tonon, Durval Jose
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: NONLINEAR DYNAMICS; v. N/A, p. 15-pg., 2024-11-23.
Resumo

We propose a classification framework for relay systems in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document}, distinguishing between generic phenomena and those of codimension one. We demonstrate the openness and density of these classifications, present unfoldings of normal forms, and analyze their dynamics to identify stable conditions within one-parameter families of these systems. We explore the local dynamics of relay systems in lower dimensions, particularly for n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document} and n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3$$\end{document}, focusing on those with codimension zero and one. Furthermore, for the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-dimensional case, we provide conditions under which relay systems are reversible and generic. In the two-dimensional case, we characterize when the origin is a center. In this context, we perturb this class of relay systems, breaking the symmetry with a perturbation parameter, and, using the Melnikov method, we prove that a repelling hyperbolic crossing limit cycle arises from the origin. (AU)

Processo FAPESP: 18/13481-0 - Geometria de sistemas de controle, sistemas dinâmicos e estocásticos
Beneficiário:Marco Antônio Teixeira
Modalidade de apoio: Auxílio à Pesquisa - Temático