Busca avançada
Ano de início
Entree


Instanton sheaves on Fano threefolds

Texto completo
Autor(es):
Comaschi, Gaia ; Jardim, Marcos
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: MANUSCRIPTA MATHEMATICA; v. 175, n. 1-2, p. 51-pg., 2024-05-14.
Resumo

Generalizing the definitions originally presented by Kuznetsov and Faenzi, we study (possibly non locally free) instanton sheaves of arbitrary rank on Fano threefolds. We classify rank 1 instanton sheaves and describe all curves whose structure sheaves are rank 0 instanton sheaves. In addition, we show that every rank 2 instanton sheaf is an elementary transformation of a locally free instanton sheaf along a rank 0 instanton sheaf. To complete the paper, we describe the moduli space of rank 2 instanton sheaves of charge 2 on a quadric threefold X and show that the full moduli space of rank 2 semistable sheaves on X with Chern classes (c1,c2,c3)=(-1,2,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(c_1,c_2,c_3)=(-\,1,2,0)$$\end{document} is connected and contains, besides the instanton component, just one other irreducible component which is also fully described. (AU)

Processo FAPESP: 18/21391-1 - Teoria de calibre e geometria algébrica
Beneficiário:Marcos Benevenuto Jardim
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 19/21140-1 - Espaços de módulos de representações pfaffianas de variedades cúbicas de dimensão três e fibrados instanton
Beneficiário:Gaia Comaschi
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado