Sub-variedades Lagrangeanas: teoria de Gromov-Witten aberta e Mirror Symmetry
Aplicações da teoria de Lie em geometria simplética e hermitiana de espaços homogê...
Fibrações de Lefschetz, grupoides de Lie e geometria não-comutativa
Texto completo | |
Autor(es): |
Shelukhin, Egor
;
Tonkonog, Dmitry
;
Vianna, Renato
Número total de Autores: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | Journal of Topology; v. 17, n. 4, p. 56-pg., 2024-12-01. |
Resumo | |
Symplectic flux measures the areas of cylinders swept in the process of a Lagrangian isotopy. We study flux via a numerical invariant of a Lagrangian submanifold that we define using its Fukaya algebra. The main geometric feature of the invariant is its concavity over isotopies with linear flux. We derive constraints on flux, Weinstein neighbourhood embeddings and holomorphic disk potentials for Gelfand-Cetlin fibres of Fano varieties in terms of their polytopes. We also describe the space of fibres of almost toric fibrations on the complex projective plane up to Hamiltonian isotopy, and provide other applications. (AU) | |
Processo FAPESP: | 24/01351-6 - Sub-variedades Lagrangeanas: teoria de Gromov-Witten aberta e Mirror Symmetry |
Beneficiário: | Renato Ferreira de Velloso Vianna |
Modalidade de apoio: | Auxílio à Pesquisa - Jovens Pesquisadores |