Busca avançada
Ano de início
Entree


Hypersurfaces of S3 x Rand H3 x R with constant principal curvatures

Texto completo
Autor(es):
Manfio, F. ; dos Santos, J. B. M. ; dos Santos, J. P. ; Van der Veken, J.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF GEOMETRY AND PHYSICS; v. 213, p. 9-pg., 2025-04-10.
Resumo

We classify the hypersurfaces of Q3s x R with three distinct constant principal curvatures, where s is an element of {1, -1} and Q3s denotes the unit sphere S3 if s = 1, whereas it denotes the hyperbolic space H3 if s = -1. We show that they are cylinders over isoparametric surfaces in Q3s, filling an intriguing gap in the existing literature. We also prove that the hypersurfaces with constant principal curvatures of Q3s x Rare isoparametric. Furthermore, we provide the complete classification of the extrinsically homogeneous hypersurfaces in Q3sxR. (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. (AU)

Processo FAPESP: 22/16097-2 - Métodos modernos em geometria diferencial e análise geométrica
Beneficiário:Paolo Piccione
Modalidade de apoio: Auxílio à Pesquisa - Temático