Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Examples of Self-Iterating Lie Algebras, 2

Autor(es):
Petrogradsky, V. M. [1] ; Shestakov, I. P. [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Ulyanovsk State Univ, Fac Math & Comp Sci, Ulyanovsk 432970 - Russia
[2] Univ Sao Paulo, Inst Math & Estatist, BR-05315970 Sao Paulo - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF LIE THEORY; v. 19, n. 4, p. 697-724, 2009.
Citações Web of Science: 8
Resumo

We study properties of self-iterating Lie algebras in positive characteristic. Let R = K{[}t(i)vertical bar i is an element of N]/(t(i)(p)vertical bar i is an element of N) be the truncated polynomial ring. Let partial derivative(i) = partial derivative/partial derivative t(i), i is an element of N, denote the respective derivations. Consider the operators v(1) = partial derivative(1) + t(0)(partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...))))); v(2) = partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...)))). Let L = Lie(p)(v(1), v(2)) subset of Der R be the restricted Lie algebra generated by these derivations. We establish the following properties of this algebra in case p = 2, 3. a) L has a polynomial growth with Gelfand-Kirillov dimension lnp/ln((1+root 5)/2). b) the associative envelope A = Alg(v(1), v(2)) of L has Gelfand-Kirillov dimension 2 lnp/ln((1+root 5)/2). c) L has a nil-p-mapping. d) L, A and the augmentation ideal of the restricted enveloping algebra u = u(0)(L) are direct sums of two locally nilpotent subalgebras. The question whether u is a nil-algebra remains open. e) the restricted enveloping algebra u(L) is of intermediate growth. These properties resemble those of Grigorchuk and Gupta-Sidki groups. (AU)

Processo FAPESP: 05/60142-7 - Álgebras e superpálgebras alternativas, de Jordan e de Malcev
Beneficiário:Ivan Chestakov
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 05/60337-2 - Álgebras de Lie e de Jordan, suas representações e generalizações
Beneficiário:Ivan Chestakov
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 05/58376-0 - Victor Petrogradsky | Ulyanovsk State University - Rússia
Beneficiário:Ivan Chestakov
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional