Métricas invariantes especiais em grupos de Lie e seus quocientes compactos
Aspectos combinatórios das Álgebras de Lie e álgebras não-comutativas
Aspectos da geometria conforme e Riemanniana em grupos de Lie e seus quocientes co...
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Ulyanovsk State Univ, Fac Math & Comp Sci, Ulyanovsk 432970 - Russia
[2] Univ Sao Paulo, Inst Math & Estatist, BR-05315970 Sao Paulo - Brazil
Número total de Afiliações: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | JOURNAL OF LIE THEORY; v. 19, n. 4, p. 697-724, 2009. |
Citações Web of Science: | 8 |
Resumo | |
We study properties of self-iterating Lie algebras in positive characteristic. Let R = K{[}t(i)vertical bar i is an element of N]/(t(i)(p)vertical bar i is an element of N) be the truncated polynomial ring. Let partial derivative(i) = partial derivative/partial derivative t(i), i is an element of N, denote the respective derivations. Consider the operators v(1) = partial derivative(1) + t(0)(partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...))))); v(2) = partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...)))). Let L = Lie(p)(v(1), v(2)) subset of Der R be the restricted Lie algebra generated by these derivations. We establish the following properties of this algebra in case p = 2, 3. a) L has a polynomial growth with Gelfand-Kirillov dimension lnp/ln((1+root 5)/2). b) the associative envelope A = Alg(v(1), v(2)) of L has Gelfand-Kirillov dimension 2 lnp/ln((1+root 5)/2). c) L has a nil-p-mapping. d) L, A and the augmentation ideal of the restricted enveloping algebra u = u(0)(L) are direct sums of two locally nilpotent subalgebras. The question whether u is a nil-algebra remains open. e) the restricted enveloping algebra u(L) is of intermediate growth. These properties resemble those of Grigorchuk and Gupta-Sidki groups. (AU) | |
Processo FAPESP: | 05/60142-7 - Álgebras e superpálgebras alternativas, de Jordan e de Malcev |
Beneficiário: | Ivan Chestakov |
Modalidade de apoio: | Auxílio à Pesquisa - Regular |
Processo FAPESP: | 05/60337-2 - Álgebras de Lie e de Jordan, suas representações e generalizações |
Beneficiário: | Ivan Chestakov |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |
Processo FAPESP: | 05/58376-0 - Victor Petrogradsky | Ulyanovsk State University - Rússia |
Beneficiário: | Ivan Chestakov |
Modalidade de apoio: | Auxílio à Pesquisa - Pesquisador Visitante - Internacional |