Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

An effective recursive partitioning approach for the packing of identical rectangles in a rectangle

Texto completo
Autor(es):
Birgin, E. G. [1] ; Lobato, R. D. ; Morabito, R. [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Stat, Dept Comp Sci, BR-05508090 Sao Paulo - Brazil
[2] Univ Fed Sao Paulo, Sao Carlos, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Journal of the Operational Research Society; v. 61, n. 2, p. 306-320, FEB 2010.
Citações Web of Science: 27
Resumo

In this work, we deal with the problem of packing (orthogonally and without overlapping) identical rectangles in a rectangle. This problem appears in different logistics settings, such as the loading of boxes on pallets, the arrangements of pallets in trucks and the stowing of cargo in ships. We present a recursive partitioning approach combining improved versions of a recursive five-block heuristic and an L-approach for packing rectangles into larger rectangles and L-shaped pieces. The combined approach is able to rapidly find the optimal solutions of all instances of the pallet loading problem sets Cover I and II (more than 50 000 instances). It is also effective for solving the instances of problem set Cover III (almost 100 000 instances) and practical examples of a woodpulp stowage problem, if compared to other methods from the literature. Some theoretical results are also discussed and, based on them, efficient computer implementations are introduced. The computer implementation and the data sets are available for benchmarking purposes. Journal of the Operational Research Society (2010) 61, 306-320. doi: 10.1057/jors.2008.141 Published online 4 February 2009 (AU)

Processo FAPESP: 06/03496-3 - Teoria e prática dos problemas de corte e empacotamento
Beneficiário:Marcos Nereu Arenales
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 06/53768-0 - Métodos computacionais de otimização
Beneficiário:José Mário Martinez Perez
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 05/57984-6 - Diferentes abordagens para problemas de empacotamento
Beneficiário:Rafael Durbano Lobato
Modalidade de apoio: Bolsas no Brasil - Iniciação Científica