Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Google Scholar, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

On the volume of unit vector fields on spaces of constant sectional curvature

Texto completo
Autor(es):
Brito‚ F.B. ; Chacón‚ P.M. ; Naveira‚ AM
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: COMMENTARII MATHEMATICI HELVETICI; v. 79, n. 2, p. 300-316, 2004.
Resumo

A unit vector field X on a Riemannian manifold determines a submanifold in the unit tangent bundle. The volume of X is the volume of this submanifold for the induced Sasaki metric. It is known that the parallel fields are the trivial minima. In this paper, we obtain a lower bound for the volume in terms of the integrals of the 2i-symmetric functions of the second fundamental form of the orthogonal distribution to the field X. In the spheres S2k+1, this lower bound is independent of X. Consequently, the volume of a unit vector field on an odd-sphere is always greater than the volume of the radial field. The main theorem on volumes is applied also to hyperbolic compact spaces, giving a non-trivial lower bound of the volume of unit fields. (AU)

Processo FAPESP: 99/02684-5 - Geometria e topologia das variedades riemannianas
Beneficiário:Fabiano Gustavo Braga Brito
Modalidade de apoio: Auxílio à Pesquisa - Temático