Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Homogeneous structures and rigidity of isoparametric submanifolds in Hilbert space

Texto completo
Autor(es):
Gorodski, Claudio [1] ; Heintze, Ernst [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Matemat & Estat, BR-05508 Sao Paulo - Brazil
[2] Univ Augsburg, Math Inst, Augsburg - Germany
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Journal of Fixed Point Theory and Applications; v. 11, n. 1, p. 93-136, MAR 2012.
Citações Web of Science: 4
Resumo

We study isoparametric submanifolds of rank at least two in a separable Hilbert space, which are known to be homogeneous by the main result in {[}E. Heintze and X. Liu, Ann. of Math. (2), 149 (1999), 149-181], and with such a submanifold M and a point x in M we associate a canonical homogeneous structure I{''} (x) (a certain bilinear map defined on a subspace of T (x) M x T (x) M). We prove that I{''} (x) , together with the second fundamental form alpha (x) , encodes all the information about M, and we deduce from this the rigidity result that M is completely determined by alpha (x) and (Delta alpha) (x) , thereby making such submanifolds accessible to classification. As an essential step, we show that the one-parameter groups of isometries constructed in {[}E. Heintze and X. Liu, Ann. of Math. (2), 149 (1999), 149-181] to prove their homogeneity induce smooth and hence everywhere defined Killing fields, implying the continuity of I{''} (this result also seems to close a gap in {[}U. Christ, J. Differential Geom., 62 (2002), 1-15]). Here an important tool is the introduction of affine root systems of isoparametric submanifolds. (AU)

Processo FAPESP: 07/03192-7 - Teoria de subvariedades e teoria de Morse em dimensão finita e infinita
Beneficiário:Claudio Gorodski
Modalidade de apoio: Auxílio à Pesquisa - Temático