Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Morphological Homogeneity of Neurons: Searching for Outlier Neuronal Cells

Texto completo
Autor(es):
Zawadzki, Krissia [1] ; Feenders, Christoph [2, 3] ; Viana, Matheus P. [1] ; Kaiser, Marcus [2, 4, 5] ; Costa, Luciano da F. [1]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Phys Sao Carlos, BR-13560970 Sao Carlos, SP - Brazil
[2] Newcastle Univ, Sch Comp Sci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear - England
[3] Carl von Ossietzky Univ Oldenburg, Inst Chem & Biol Marine Environm, Oldenburg - Germany
[4] Newcastle Univ, Inst Neurosci, Newcastle Upon Tyne NE2 4HH, Tyne & Wear - England
[5] Seoul Natl Univ, Dept Brain & Cognit Sci, Seoul - South Korea
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: NEUROINFORMATICS; v. 10, n. 4, p. 379-389, OCT 2012.
Citações Web of Science: 7
Resumo

We report a morphology-based approach for the automatic identification of outlier neurons, as well as its application to the NeuroMorpho.org database, with more than 5,000 neurons. Each neuron in a given analysis is represented by a feature vector composed of 20 measurements, which are then projected into a two-dimensional space by applying principal component analysis. Bivariate kernel density estimation is then used to obtain the probability distribution for the group of cells, so that the cells with highest probabilities are understood as archetypes while those with the smallest probabilities are classified as outliers. The potential of the methodology is illustrated in several cases involving uniform cell types as well as cell types for specific animal species. The results provide insights regarding the distribution of cells, yielding single and multi-variate clusters, and they suggest that outlier cells tend to be more planar and tortuous. The proposed methodology can be used in several situations involving one or more categories of cells, as well as for detection of new categories and possible artifacts. (AU)

Processo FAPESP: 05/00587-5 - Modelagem por redes (grafos) e técnicas de reconhecimento de padrões: estrutura, dinâmica e aplicações
Beneficiário:Roberto Marcondes Cesar Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 10/01994-1 - Investigação sistemática da morfologia neuronal através da base de dados pública NeuroMorpho
Beneficiário:Krissia de Zawadzki
Modalidade de apoio: Bolsas no Brasil - Iniciação Científica