Busca avançada
Ano de início
Entree


Invariantes de variedades determinantais

Texto completo
Autor(es):
Nancy Carolina Chachapoyas Siesquén
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação
Data de defesa:
Membros da banca:
Maria Aparecida Soares Ruas; Jean Paul Brasselet; Nicolas Andre Oliver Dutertre; Marcelo Escudeiro Hernandes; Jawad Snoussi
Orientador: Maria Aparecida Soares Ruas
Resumo

Neste trabalho estudamos variedades determinantais essencialmente isoladas (EIDS), definidas por W. Èbeling e S. M. Gusen-Zade em [23]. Este tipo de singularidades é uma generalização das singularidades isoladas. A variedade determinantal genérica Mtm, n é o subconjunto das matrizes m X n, tais que o posto seja menor que t, onde t &le; min{n;m}. Uma variedade X &sub; CN é determinantal se é definida como a pré-imagem de uma função holomorfa F : CN &rarr; Mm;n, sobre a variedade determinantal genérica M t</sup m;n, com a condição codim X = codim Mtm;n. Uma variedade determinantal tem singularidade isolada se N &le; (n- t + 2)(m- t + 2) e admite suavização se N < (n-t+2)(m-t+2). Trabalhos recentes têm estudado variedades determinantais com singularidade isolada, [35, 31]. O número de Milnor de uma superfície determinantal é investigado em [35, 31, 12]. Para variedades determinantais de dimensões maiores a característica de Euler evanescente é definida em [31, 12]. Neste trabalho estudamos o conjunto de limites de hiperplanos tangentes às variedades determinantais X2 &sub; C4 e X3 &sub; C5 para dar uma caracterização deste conjunto, em que o número de Milnor de sua seção com a superfície no primeiro caso ou a 3- variedade no segundo caso não é mínimo. O primeiro caso foi estudado por Jawad Snoussi em [38]. Provamos também que se X é uma EIDS de dimensão d e H e H\' são dois hiperplanos fortemente gerais, se P &sub; H e P\' &sub;H\' são planos lineares de codimensão d - 2 contidos respectivamente em H e H\', o número de Milnor das superfícies correspondentes X &cap; P\' são iguais. Este resultado foi provado para o caso em que a seção genérica é uma curva em [26]. Estudamos a transformada de Nash de uma EIDS e discutimos condições suficientes para que esta transformada seja suave. Outro objetivo é estudar a obstrução de Euler de singularidades determinantais essencialmente isoladas. Obtemos fórmulas que relacionam a obstrução de Euler com a característica de Euler evanescente da suavização essencial de suas seções gerais. Estudamos as variedades determinantais com o conjunto singular de dimensão 1 para ilustrar os resultados. (AU)

Processo FAPESP: 10/09736-1 - Classes de Milnor e variedades polares
Beneficiário:Nancy Carolina Chachapoyas Siesquén
Linha de fomento: Bolsas no Brasil - Doutorado