Busca avançada
Ano de início
Entree


Dinâmica de correspondências holomorfas

Texto completo
Autor(es):
Carlos Alberto Siqueira Lima
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação
Data de defesa:
Membros da banca:
Daniel Smania Brandão; Carlos Alberto Maquera Apaza; Sylvain Philippe Pierre Bonnot; Samuel Anton Senti
Orientador: Daniel Smania Brandão
Resumo

Generalizamos as noções de estabilidade estrutural e hiperbolicidade para a família de correspondências holomorfas Hc(z) = zr + c; onde r > 1 é racional e zr = exp r log z: Descobrimos que Hc é estruturalmente estável em todos os parâmetros hiperbólicos satisfazendo a condição de fuga. Tipicamente Hc possui infinitos pontos periódicos atratores, fato totalmente inesperado, uma vez que este número é sempre finito para aplicações racionais. O conjunto de tais pontos dá origem ao chamado conjunto de Julia dual, que é um conjunto de Cantor proveniente de um Conformal Iterated Function System. Tanto o conjunto de Julia e quanto seu dual são projeções de movimentos holomorfos de sistemas definidos em subconjuntos compactos denotados por Xc e Wc; respectivamente de um espaço de Banach. Para todo c próximo de zero: (1) mostramos que Jc é reunião de arcos quase-conformes próximos do círculo unitário; (2) o conjunto Xc é um movimento holomorfo do solenóide X0; (3) utilizando o formalismo dos estados de Gibbs, exibimos um limitante superior para a dimensão de Hausdorff de Jc. Consequentemente, Jc possui medida de Lebesgue nula. (AU)

Processo FAPESP: 10/17397-2 - Dinâmica de correspondências holomorfas
Beneficiário:Carlos Alberto Siqueira Lima
Linha de fomento: Bolsas no Brasil - Doutorado