Busca avançada
Ano de início
Entree


Codigos esfericos em toros planares

Texto completo
Autor(es):
Cristiano Torezzan
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica
Data de defesa:
Membros da banca:
Sueli Irene Rodrigues Costa; José Mario Martínez Pérez; Reginaldo Palazzo Júnior; Vilmar Trevisan; Weiler Alves Finamore
Orientador: Sueli Irene Rodrigues Costa; José Plínio de Oliveira Santos
Resumo

Códigos esféricos em espaços euclidianos n-dimensionais são conjuntos finitos de pontos sobre superfícies esféricas e têm sido amplamente estudados em conexão com a transmissão de sinais sobre um canal Gaussiano. Para este propósito deseja-se maximizar a distância mínima entre dois pontos quaisquer do código, o que está fortemente relacionado com o problema mais geral do empacotamento em esferas, o qual contempla aplicações em outras áreas. Na primeira parte deste trabalho estudamos códigos esféricos gerados como órbita de um vetor unitário sob a ação de um grupo comutativo de matrizes ortogonais, os denominados códigos de grupo comutativo. Propomos um método para obter o melhor código de grupo comutativo n-dimensional de ordem M, que baseia-se na associação entre tais códigos em dimensão 2k e reticulados k-dimensionais. Utilizando fatorações matriciais conhecidas, como as formas normais de Hermite e Smith, demonstramos que é possível reduzir o número de casos a serem analisados através da identificação de códigos isométricos que podem ser descartados. O problema da busca do vetor inicial ótimo para códigos de grupo comutativo é formalmente estabelecido com um problema de programação linear e utilizado em uma das etapas do método. Apresentamos resultados numéricos, incluindo tabelas com códigos de grupo comutativo ótimos em várias dimensões. Outra contribuição deste trabalho é a introdução de uma nova família de códigos esféricos, na qual os pontos são alocados sobre a superfície da esfera unitária 2k-dimensional em camadas de toros planares. Em cada uma das camadas deste código, pode-se estabelecer um código de grupo para a geração dos sinais e utilizar os resultados acima mencionados. Além de limitantes, inferior e superior, para o número de pontos, um método para construção destes códigos é apresentado explicitamente e alguns exemplos são construídos. Os resultados mostram que tais códigos têm desempenho comparável aos melhores códigos esféricos estruturados conhecidos, com destaque para uma potencial vantagem no processo de codificação/decodificação, decorrente da homogeneidade, estrutura de grupo e associação a reticulados na metade da dimensão (AU)

Processo FAPESP: 05/58102-7 - Códigos corretores de erros gerados por grupos de simetrias
Beneficiário:Cristiano Torezzan
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto