Busca avançada
Ano de início
Entree


Topological methods in the study of periodic solutions of non-smooth differential equations

Texto completo
Autor(es):
Francisco Bruno Gomes da Silva
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica
Data de defesa:
Membros da banca:
Douglas Duarte Novaes; Ricardo Miranda Martins; Ana Cristina de Oliveira Mereu; Murilo Rodolfo Cândido; Durval José Tonon
Orientador: Douglas Duarte Novaes
Resumo

Neste trabalho é realizado um estudo das soluções periódicas de equações diferenciais não-suaves através da Teoria \emph{Averaging}, do grau de Brouwer e de equações de operadores em espaços de Banach. São fornecidas condições suficientes que garantem a persistência e também para a convergência de soluções periódicas de equações diferenciais tanto contínuas não-Lipschitz como Carathéodory descontínuas dependendo de um parâmetro pequeno. Apresenta-se ainda uma revisão das Teorias clássicas de Melnikov e \emph{Averaging} para equações diferenciais periódicas suaves, como forma de motivar e expor os desafios do estudo realizado neste trabalho. Foram obtidos resultados consistentes com aqueles previamente estabelecidos na literatura e que os estendem para casos antes não contemplados, o que é devidamente evidenciado em exemplos (AU)

Processo FAPESP: 18/22689-4 - Métodos topológicos no estudo de soluções periódicas em equações diferenciais não-suaves
Beneficiário:Francisco Bruno Gomes da Silva
Modalidade de apoio: Bolsas no Brasil - Doutorado