Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Improved inference in dispersion models

Texto completo
Autor(es):
Medeiros, Francisco M. C. [1] ; Ferrari, Silvia L. P. [2] ; Lemonte, Artur J. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Rio Grande do Norte, Dept Stat, Natal, RN - Brazil
[2] Univ Sao Paulo, Dept Stat, Sao Paulo - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Applied Mathematical Modelling; v. 51, p. 317-328, NOV 2017.
Citações Web of Science: 1
Resumo

We derive a general matrix Bartlett-type correction factor to the gradient statistic in the class of dispersion models. The correction improves the large-sample X-2 approximation to the null distribution of the gradient statistic when the sample size is finite. We conduct Monte Carlo simulation experiments to evaluate and compare the performance of various different tests, namely the usual Wald, likelihood ratio, score, and gradient tests, the Bartlett-corrected versions of the likelihood ratio, score, and gradient tests, and bootstrap-based tests. The simulation results suggest that the analytical and computational corrections are effective in removing size distortions of the type I error probability with no power loss. The impact of the corrections in two real data applications is considered for illustrative purposes. (C) 2017 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 12/21788-2 - Modelos de regressão e aplicações
Beneficiário:Heleno Bolfarine
Modalidade de apoio: Auxílio à Pesquisa - Temático