Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Stability properties of solitary waves for fractional KdV and BBM equations

Texto completo
Autor(es):
Pava, Jaime Angulo
Número total de Autores: 1
Tipo de documento: Artigo Científico
Fonte: Nonlinearity; v. 31, n. 3, p. 920-956, MAR 2018.
Citações Web of Science: 2
Resumo

This paper sheds new light on the stability properties of solitary wave solutions associated with Korteweg-de Vries-type models when the dispersion is very low. Using a compact, analytic approach and asymptotic perturbation theory, we establish sufficient conditions for the existence of exponentially growing solutions to the linearized problem and so a criterium of spectral instability of solitary waves is obtained for both models. Moreover, the nonlinear stability and spectral instability of the ground state solutions for both models is obtained for some specific regimen of parameters. Via a Lyapunov strategy and a variational analysis, we obtain the stability of the blow-up of solitary waves for the critical fractional KdV equation. The arguments presented in this investigation show promise for use in the study of the instability of traveling wave solutions of other nonlinear evolution equations. (AU)

Processo FAPESP: 16/07311-0 - Equações de Schrodinger com pontos de interação e instabilidade para a equação fracionária de Korteweg- de Vries
Beneficiário:Jaime Angulo Pava
Modalidade de apoio: Bolsas no Exterior - Pesquisa