Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Data-Fusion Techniques for Open-Set Recognition Problems

Texto completo
Autor(es):
Cordova Neira, Manuel Alberto [1] ; Mendes Junior, Pedro Ribeiro [1] ; Rocha, Anderson [1] ; Torres, Ricardo Da Silva [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Comp, BR-13083872 Campinas, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: IEEE ACCESS; v. 6, p. 21242-U24, 2018.
Citações Web of Science: 3
Resumo

Most pattern classification techniques are focused on solving closed-set problems in which a classifier is trained with samples of all classes that may appear during the testing phase. In many situations, however, samples of unknown classes, i.e., whose classes did not have any example during the training stage, need to be properly handled during testing. This specific setup is referred to in the literature as open-set recognition. Open-set problems are harder as they might be ill-sampled, not sampled at all, or even undefined. Differently from existing literature, here we aim at solving open-set recognition problems combining different classifiers and features while, at the same time, taking care of unknown classes. Researchers have greatly benefited from combining different methods in order to achieve more robust and reliable classifiers in daring recognition conditions, but those solutions have often focused on closed-set setups. In this paper, we propose the integration of a newly designed open-set graph-based optimum-path forest (OSOPF) classifier with genetic programming (GP) and majority voting fusion techniques. While OSOPF takes care of learning decision boundaries more resilient to unknown classes and outliers, GP combines different problem features to discover appropriate similarity functions and allows a more robust classification through early fusion. Finally, the majority-voting approach combines different classification evidence from different classifier outcomes and features through late-fusion techniques. Performed experiments show the proposed data-fusion approaches yield effective results for open-set recognition problems, significantly outperforming existing counterparts in the literature and paving the way for investigations in this field. (AU)

Processo FAPESP: 14/50715-9 - Characterizing and predicting biomass production in sugarcane and eucalyptus plantations in Brazil
Beneficiário:Rubens Augusto Camargo Lamparelli
Modalidade de apoio: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE
Processo FAPESP: 17/20945-0 - EMU concedido no processo 16/50250-1: local positioning system
Beneficiário:Sergio Augusto Cunha
Modalidade de apoio: Auxílio à Pesquisa - Programa Equipamentos Multiusuários
Processo FAPESP: 16/50250-1 - O segredo de jogar futebol: Brasil versus Holanda
Beneficiário:Sergio Augusto Cunha
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 13/50155-0 - Combining new technologies to monitor phenology from leaves to ecosystems
Beneficiário:Leonor Patricia Cerdeira Morellato
Modalidade de apoio: Auxílio à Pesquisa - Programa de Pesquisa sobre Mudanças Climáticas Globais - PITE
Processo FAPESP: 15/24494-8 - Comunicação e processamento de big data em nuvens e névoas computacionais
Beneficiário:Nelson Luis Saldanha da Fonseca
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 17/12646-3 - Déjà vu: coerência temporal, espacial e de caracterização de dados heterogêneos para análise e interpretação de integridade
Beneficiário:Anderson de Rezende Rocha
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 13/50169-1 - Towards an understanding of tipping points within tropical South American biomes
Beneficiário:Ricardo da Silva Torres
Modalidade de apoio: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE