Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Distributed and boundary expressions of first and second order shape derivatives in nonsmooth domains

Texto completo
Autor(es):
Laurain, Antoine
Número total de Autores: 1
Tipo de documento: Artigo Científico
Fonte: JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES; v. 134, p. 328-368, FEB 2020.
Citações Web of Science: 0
Resumo

We study distributed and boundary integral expressions of Eulerian and Frechet shape derivatives for several classes of nonsmooth domains such as open sets, Lipschitz domains, polygons and curvilinear polygons, semiconvex and convex domains. For general shape functionals, we establish relations between distributed Eulerian and Frechet shape derivatives in tensor form for Lipschitz domains, and infer two types of boundary expressions for Lipschitz and C-1-domains. We then focus on the particular case of the Dirichlet energy, for which we compute first and second order distributed shape derivatives in tensor form. Depending on the type of nonsmooth domain, different boundary expressions can be derived from the distributed expressions. This requires a careful study of the regularity of the solution to the Dirichlet Laplacian in nonsmooth domains. These results are applied to obtain a matricial expression of the second order shape derivative for polygons. (C) 2019 Elsevier Masson SAS. All rights reserved. (AU)

Processo FAPESP: 16/24776-6 - Otimização de forma e problemas de fronteira livre
Beneficiário:Antoine Laurain
Modalidade de apoio: Auxílio à Pesquisa - Regular